Affichage de 1 - 10 of 10 (Bibliographie: Bibliographie WIKINDX globale)
Parameters:
|
Creator: Tirosh
|
|
Stavy, R., & Tirosh, D. (1993). Subdivision processes in mathematics and science. Journal of Research in Science Teaching, 30(6), p. p579–586.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 34.97%
|
|
Stavy, R., & Tirosh, D. (1996). The role of intuitive rules in science and mathematics education. European Journal of Teacher Education, 19(2), p. p109.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 26.61%
|
|
Tall, D., & Tirosh, D. (2001). Infinity : the never-ending struggle. Educational Studies in Mathematics, 48(2-3), p. p129.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 26.98%
|
|
Tirosh, D., & Graeber, A. O. (1991). The effect of problem type and common misconceptions on preservice elementary teachers' thinking about division. School Science and Mathematics, 91(4), p. p157.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 28.52%
|
|
Tirosh, D., Stavy, R., & Aboulafia, M. (1998). It is possible to confine the application of the intuitive rule : 'subdivision processes can always be repeated' ? International Journal of Mathematical Education in Science and Technology, 29(6), pp. 813–825.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 26.61%
|
|
Tirosh, D., Stavy, R., & Cohen, S. (1998). Cognitive conflict and intuitive rules. International journal of science education, 20(10), p. p1257.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 24.98%
|
|
Tirosh, D., & Stavy, R. (1999). Intuitive rules and comparisons tasks. mathematical thinking and learning, 1(3), p. p179–194.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 35.15%
|
|
Tirosh, D., & Stavy, R. (1999). Intuitive rules: A way to explain and predict students' reasoning. Educational Studies in Mathematics, 38(1-3), p. p51–66.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 25.34%
|
|
Tirosh, D. (1999). Finite or infinite sets : definitions and intuituions. International Journal of Mathematics Education in Science and Technology, 30(3), pp. 341–349.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 37.6%
|
|
Tirosh, D., & Tsamir, P. (2004). What can mathematics education gain from the conceptual change approach? and what can the conceptual change approach gain from its application to mathematics education? Learning and Instruction, 14(5), p. p535–540.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 34.42%
|
|
|