Abramovitz, B., Berezina, M., & Berman, A. (2002). Incorrect but instructive. International Journal of Mathematical Education in Science and Technology, 33(3), p. p465.
|
Ajoutée par: Lynda Taabane
|
|
Pop. 31.24%
|
|
Anderson, J., Austin, K., Barnard, T., & Jagger, J. (1998). Do third-year mathematics undergraduates know what they are supposed to know? International Journal of Mathematical Education in Science and Technology, 29(3), p. p401.
|
Ajoutée par: Lynda Taabane
|
|
Pop. 34.97%
|
|
Bezuidenhout, J. (1998). First-year university students' understanding of rate of change. International Journal of Mathematical Education in Science and Technology, 29(3), p. p389.
|
Ajoutée par: Lynda Taabane
|
|
Pop. 32.88%
|
|
Bezuidenhout, J. (2001). Limits and continuity: Some conceptions of first-year students. International Journal of Mathematical Education in Science and Technology, 32(4), p. p487.
|
Ajoutée par: Lynda Taabane
|
|
Pop. 33.61%
|
|
Bruno, A., & Martinon, A. (1999). The teaching of numerical extensions: The case of negative numbers. International Journal of Mathematical Education in Science and Technology, 30(6), pp. 789–809.
|
Dernièrement modifiée par: Sterenn Audo
|
|
Pop. 32.43%
|
|
Cai, J. (2000). Understanding and representing the arithmetic averaging algorithm: an analysis and comparison of u.s. and chinese students' responses. International Journal of Mathematical Education in Science and Technology, 31(6), pp. 839–855.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 26.43%
|
|
Elk, S. B. (1998). Is calculus really that different from algebra? a more logical way to understand and teach calculus. International Journal of Mathematical Education in Science and Technology, 29(3), pp. 351–358.
|
Dernièrement modifiée par: Sterenn Audo
|
|
Pop. 24.52%
|
|
Galbraith, P., & Haines, C. (2000). Conceptual mis(understandings) of beginning undergraduates. International Journal of Mathematical Education in Science and Technology, 31(5), p. p651.
|
Ajoutée par: Lynda Taabane
|
|
Pop. 26.7%
|
|
Graham, T., & Rowlands, S. (2000). Using computer software in the teaching of mechanics. International Journal of Mathematical Education in Science and Technology, 31(4), p. p479.
|
Ajoutée par: Lynda Taabane
|
|
Pop. 24.7%
|
|
Munisamy, S., & Doraisamy, L. (1998). Levels of understanding of probability concepts among secondary school pupils. International Journal of Mathematical Education in Science and Technology, 29(1), pp. 39–45.
|
Dernièrement modifiée par: Sterenn Audo
|
|
Pop. 25.07%
|
|
Roberts, L. (1999). Using concept maps to measure statistical understanding. International Journal of Mathematical Education in Science and Technology, 30(5), p. p707.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 26.16%
|
|
Tirosh, D., Stavy, R., & Aboulafia, M. (1998). It is possible to confine the application of the intuitive rule : 'subdivision processes can always be repeated' ? International Journal of Mathematical Education in Science and Technology, 29(6), pp. 813–825.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 26.61%
|
|