Affichage de 1 - 12 of 12 (Bibliographie: Bibliographie WIKINDX globale)
 
Parameters:
Collection:  International Journal of Mathematical Education in Science and Technology
Abramovitz, B., Berezina, M., & Berman, A. (2002). Incorrect but instructive. International Journal of Mathematical Education in Science and Technology, 33(3), p. p465. Ajoutée par: Lynda Taabane  V    Pop. 31.24%
Anderson, J., Austin, K., Barnard, T., & Jagger, J. (1998). Do third-year mathematics undergraduates know what they are supposed to know? International Journal of Mathematical Education in Science and Technology, 29(3), p. p401. Ajoutée par: Lynda Taabane  V    Pop. 34.97%
Bezuidenhout, J. (1998). First-year university students' understanding of rate of change. International Journal of Mathematical Education in Science and Technology, 29(3), p. p389. Ajoutée par: Lynda Taabane  V    Pop. 32.88%
Bezuidenhout, J. (2001). Limits and continuity: Some conceptions of first-year students. International Journal of Mathematical Education in Science and Technology, 32(4), p. p487. Ajoutée par: Lynda Taabane  V    Pop. 33.61%
Bruno, A., & Martinon, A. (1999). The teaching of numerical extensions: The case of negative numbers. International Journal of Mathematical Education in Science and Technology, 30(6), pp. 789–809. Dernièrement modifiée par: Sterenn Audo  v    Pop. 32.43%
Cai, J. (2000). Understanding and representing the arithmetic averaging algorithm: an analysis and comparison of u.s. and chinese students' responses. International Journal of Mathematical Education in Science and Technology, 31(6), pp. 839–855. Dernièrement modifiée par: Lynda Taabane  v    Pop. 26.43%
Elk, S. B. (1998). Is calculus really that different from algebra? a more logical way to understand and teach calculus. International Journal of Mathematical Education in Science and Technology, 29(3), pp. 351–358. Dernièrement modifiée par: Sterenn Audo  v    Pop. 24.52%
Galbraith, P., & Haines, C. (2000). Conceptual mis(understandings) of beginning undergraduates. International Journal of Mathematical Education in Science and Technology, 31(5), p. p651. Ajoutée par: Lynda Taabane  V    Pop. 26.7%
Graham, T., & Rowlands, S. (2000). Using computer software in the teaching of mechanics. International Journal of Mathematical Education in Science and Technology, 31(4), p. p479. Ajoutée par: Lynda Taabane  V    Pop. 24.7%
Munisamy, S., & Doraisamy, L. (1998). Levels of understanding of probability concepts among secondary school pupils. International Journal of Mathematical Education in Science and Technology, 29(1), pp. 39–45. Dernièrement modifiée par: Sterenn Audo  v    Pop. 25.07%
Roberts, L. (1999). Using concept maps to measure statistical understanding. International Journal of Mathematical Education in Science and Technology, 30(5), p. p707. Dernièrement modifiée par: Lynda Taabane  V    Pop. 26.16%
Tirosh, D., Stavy, R., & Aboulafia, M. (1998). It is possible to confine the application of the intuitive rule : 'subdivision processes can always be repeated' ? International Journal of Mathematical Education in Science and Technology, 29(6), pp. 813–825. Dernièrement modifiée par: Lynda Taabane  V    Pop. 26.61%
wikindx  v3.8.2 ©2007     |     Total Resources:  1609     |     Database queries:  54     |     Script execution:  1.06367 secs