Bonotto, C. (2005). How informal out-of-school mathematics can help students make sense of formal in-school mathematics: The case of multiplying by decimal numbers. mathematical thinking and learning, 7(4), p. p313–344.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 33.88%
|
|
Campbell, A. E., Adams, V. M., & Davis, G. E. (2007). Cognitive demands and second-language learners: A framework for analyzing mathematics instructional contexts. mathematical thinking and learning, 9(1), pp. 3–30.
|
Dernièrement modifiée par: Sterenn Audo
|
|
Pop. 34.33%
|
|
Chiu, M. M. (2001). Using metaphors to understand and solve arithmetic problems: Novices and experts working with negative numbers. mathematical thinking and learning, 3(2-3), p. p93.
|
Dernièrement modifiée par: Sterenn Audo
|
|
Pop. 31.88%
|
|
De Bock, D., Verschaffel, L., & Janssens, D. (2002). The effects of different problem presentations and formulations on the illusion of linearity in secondary school students. mathematical thinking and learning, 4(1), p. p65.
|
Ajoutée par: Lynda Taabane
|
|
Pop. 29.88%
|
|
Fischbein, E. (1999). Psychology and mathematics education. mathematical thinking and learning, 1(1), pp. 47–58.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 22.8%
|
|
Juter, K. (2006). Limits of functions as they developed through time and as students learn them today. mathematical thinking and learning, 8(4), pp. 407–431.
|
Dernièrement modifiée par: Sterenn Audo
|
|
Pop. 33.97%
|
|
Peled, I., & Segalis, B. (2005). It's not too late to conceptualize: Constructing a generalized subtraction schema by abstracting and connecting procedures. mathematical thinking and learning, 7(3), p. p207–230.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 33.15%
|
|
Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: An elaboration of the hypothetical learning trajectory. mathematical thinking and learning, 6(2), pp. 91–104.
|
Dernièrement modifiée par: Sterenn Audo
|
|
Pop. 33.06%
|
|
Simon, M. A. (2006). Key developmental understandings in mathematics: A direction for investigating and establishing learning goals. mathematical thinking and learning, 8(4), pp. 359–371.
|
Dernièrement modifiée par: Sterenn Audo
|
|
Pop. 31.34%
|
|
Tirosh, D., & Stavy, R. (1999). Intuitive rules and comparisons tasks. mathematical thinking and learning, 1(3), p. p179–194.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 35.15%
|
|
Watson, J. M., & Moritz, J. B. (2000). The longitudinal development of understanding of average. mathematical thinking and learning, 2(1&2), pp. 11–50.
|
Dernièrement modifiée par: Lynda Taabane
|
|
Pop. 22.98%
|
|