Affichage de 1 - 11 of 11 (Bibliographie: Bibliographie WIKINDX globale)
 
Parameters:
Collection:  mathematical thinking and learning
Bonotto, C. (2005). How informal out-of-school mathematics can help students make sense of formal in-school mathematics: The case of multiplying by decimal numbers. mathematical thinking and learning, 7(4), p. p313–344. Dernièrement modifiée par: Lynda Taabane  V    Pop. 33.88%
Campbell, A. E., Adams, V. M., & Davis, G. E. (2007). Cognitive demands and second-language learners: A framework for analyzing mathematics instructional contexts. mathematical thinking and learning, 9(1), pp. 3–30. Dernièrement modifiée par: Sterenn Audo  V    Pop. 34.33%
Chiu, M. M. (2001). Using metaphors to understand and solve arithmetic problems: Novices and experts working with negative numbers. mathematical thinking and learning, 3(2-3), p. p93. Dernièrement modifiée par: Sterenn Audo  V    Pop. 31.88%
De Bock, D., Verschaffel, L., & Janssens, D. (2002). The effects of different problem presentations and formulations on the illusion of linearity in secondary school students. mathematical thinking and learning, 4(1), p. p65. Ajoutée par: Lynda Taabane  V    Pop. 29.88%
Fischbein, E. (1999). Psychology and mathematics education. mathematical thinking and learning, 1(1), pp. 47–58. Dernièrement modifiée par: Lynda Taabane  V    Pop. 22.8%
Juter, K. (2006). Limits of functions as they developed through time and as students learn them today. mathematical thinking and learning, 8(4), pp. 407–431. Dernièrement modifiée par: Sterenn Audo  V    Pop. 33.97%
Peled, I., & Segalis, B. (2005). It's not too late to conceptualize: Constructing a generalized subtraction schema by abstracting and connecting procedures. mathematical thinking and learning, 7(3), p. p207–230. Dernièrement modifiée par: Lynda Taabane  V    Pop. 33.15%
Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: An elaboration of the hypothetical learning trajectory. mathematical thinking and learning, 6(2), pp. 91–104. Dernièrement modifiée par: Sterenn Audo  V    Pop. 33.06%
Simon, M. A. (2006). Key developmental understandings in mathematics: A direction for investigating and establishing learning goals. mathematical thinking and learning, 8(4), pp. 359–371. Dernièrement modifiée par: Sterenn Audo  V    Pop. 31.34%
Tirosh, D., & Stavy, R. (1999). Intuitive rules and comparisons tasks. mathematical thinking and learning, 1(3), p. p179–194. Dernièrement modifiée par: Lynda Taabane  V    Pop. 35.15%
Watson, J. M., & Moritz, J. B. (2000). The longitudinal development of understanding of average. mathematical thinking and learning, 2(1&2), pp. 11–50. Dernièrement modifiée par: Lynda Taabane  v    Pop. 22.98%
wikindx  v3.8.2 ©2007     |     Total Resources:  1609     |     Database queries:  55     |     Script execution:  0.65867 secs