Affichage de 81 - 100 of 223 (Bibliographie: Bibliographie WIKINDX globale)
 
Parameters:
Category:  Apprentissage mathématiques
Geary, D. C. (2004). Mathematics and learning disabilities. Journal of learning disabilities, 37(1), pp. 4–15. Dernièrement modifiée par: Sterenn Audo  V    Pop. 35.57%
Geary, D. C. (2005). Role of cognitive theory in the study of learning disability in mathematics. Journal of learning disabilities, 38(4), pp. 305–307. Ajoutée par: Sterenn Audo  V    Pop. 25.86%
Geary, D. C. (2006). Development of mathematical understanding. In D. Kuhn, R. S. Siegler, W. Damon & R. M. Lerner (Eds.), Handbook of child psychology: Vol 2, Cognition, perception, and language (6th ed.) (pp. 777–810). Hoboken, NJ: John Wiley & Sons Inc. Ajoutée par: Sterenn Audo  V    Pop. 26.59%
Gelman, R. (2006). Young natural-number arithmeticians. Current Directions in Psychological Science, 15(4), pp. 193–197. Dernièrement modifiée par: Sterenn Audo  V    Pop. 32.67%
Gifford, S. (2004). A new mathematics pedagogy for the early years: In search of principles for practice. International Journal of Early Years Education, 12(2), pp. 99–115. Dernièrement modifiée par: Sterenn Audo  V    Pop. 32.03%
Gilmore, C. K., & Bryant, P. (2006). Individual differences in children's understanding of inversion and arithmetical skill. British Journal of Educational Psychology, 76(2), pp. 309–331. Dernièrement modifiée par: Sterenn Audo  V    Pop. 35.39%
Goldstone, R. L., & Medin, D. L. (1994). Time course of comparison. Journal of experimental psychology: Learning, Memory, and Cognition, 20(1), pp. 29–50. Ajoutée par: Sterenn Audo  V    Pop. 33.21%
Goldstone, R. L., Landy, D., & Son, J. Y. (In press). A well grounded education: the role of perception in science and mathematics. In M. de Vega, A. M. Glenberg & A. Graesser (Eds.), Symbols, embodiment, and meaning Oxford Press. Ajoutée par: Sterenn Audo  V    Pop. 28.04%
Graeber, A. O. (1999). Forms of knowing mathematics: What preservice teachers should learn. Educational Studies in Mathematics, 38(1-3), p. p189. Dernièrement modifiée par: Sterenn Audo  V    Pop. 24.68%
Graeber, A. O. (2006). Mathematics instruction across the grades: What consultants should know. Journal of Educational & Psychological Consultation, 16(4), p. p349. Dernièrement modifiée par: Sterenn Audo  V    Pop. 24.77%
Greeno, J. G., & Laberge, D. (1963). Sequential dependencies and nonreinforcement in probability learning. Journal of Experimental Psychology, 66(6), p. p547–552. Dernièrement modifiée par: Lynda Taabane  V    Pop. 29.76%
Greeno, J. G., & Bjork, R. A. (1973). Mathematical learning theory and the new "mental forestry". Annual Review of Psychology, 24, p. p81. Ajoutée par: Lynda Taabane  V    Pop. 28.68%
Greeno, J. G. (1980). Psychology of learning, 1960-1980: One participant's observations. American Psychologist, 35(8), p. p713–728. Ajoutée par: Lynda Taabane  V    Pop. 29.67%
Greeno, J. G. (1986). Collaborative teaching and making sense of symbols: Comment on lampert's 'knowing, doing, and teaching multiplication'. Cognition & Instruction, 3(4), p. p343. Ajoutée par: Lynda Taabane  V    Pop. 28.77%
Greeno, J. G. (1987). Instructional representations based on research about understanding. In A. H. Schoenfeld (Ed.), Cognitive Science and Mathematics Education (pp. p61–88). New-York: Academic. Dernièrement modifiée par: Lynda Taabane  V    Pop. 26.59%
Greeno, J. G. (2006). Authoritative, accountable positioning and connected, general knowing: Progressive themes in understanding transfer. Journal of the Learning Sciences, 15(4), p. p537–547. Dernièrement modifiée par: Lynda Taabane  V    Pop. 35.39%
Greer, B. (2001). Understanding probabilistic thinking: The legacy of efraim fischbein. Educational Studies in Mathematics, 45(1-3), p. p15. Dernièrement modifiée par: Lynda Taabane  V    Pop. 29.22%
Guin, D. (1991). La notion d'opérateur dans une modélisation cognitive de la compréhension des problèmes additifs. Mathématiques et sciences humaines, 113, pp. 5–33. Ajoutée par: Sterenn Audo  v    Pop. 16.61%
Guin, D. (1992). Une modélisation mathématique de la compréhension des énoncés additifs. Mathématiques et sciences humaines, 120, pp. 49–77. Ajoutée par: Sterenn Audo  v    Pop. 19.6%
Gutstein, E. (. (2007). 'and that's just how it starts': Teaching mathematics and developing student agency. Teachers College Record, 109(2), pp. 420–448. Dernièrement modifiée par: Sterenn Audo  V    Pop. 32.21%

1 - 20   |   21 - 40   |   41 - 60   |   61 - 80   |   81 - 100   |   101 - 120   |   121 - 140   |   141 - 160   |   161 - 180   |   181 - 200   |   Fin
wikindx  v3.8.2 ©2007     |     Total Resources:  1609     |     Database queries:  86     |     Script execution:  1.00097 secs