Affichage de 1 - 20 of 27 (Bibliographie: Bibliographie WIKINDX globale)
 
Parameters:
Category:  Moyenne
Batanero, C., Godino, J. D., Vallecillos, A., Green, D. R., & Holmes, P. (1994). Errors and difficulties in understanding elementary statistical concepts. International Journal of Mathematics Education in Science and Technology, 25(4), pp. 527–547. Dernièrement modifiée par: Lynda Taabane  v    Pop. 26.52%
J. Cai & J. C. Moyer (Eds.) Middle school students' understanding of average: a problem-solving approach. Columbus: Annual meeting of the north american chapter of the international group for the psychology of mathematics education. (21 Octobre 1995). Dernièrement modifiée par: Lynda Taabane  V    Pop. 27.43%
Cai, J. (1995). Beyond the computational algorithm: students' understanding of the arithmetic average concept. In L. Meira & D. Carraher (Eds.), Proceedings of the Nineteenth Annual Meeting of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 144–151). Dernièrement modifiée par: Lynda Taabane  v    Pop. 25.98%
J. Cai, J. C. Moyer & N. J. Grochowski (Eds.) Making the mean meaningful: two instructional studies. Chicago: Annual meeting of the american educational research association. (24 Mars 1997). Dernièrement modifiée par: Lynda Taabane  V    Pop. 27.97%
Cai, J. (2000). Understanding and representing the arithmetic averaging algorithm: an analysis and comparison of u.s. and chinese students' responses. International Journal of Mathematical Education in Science and Technology, 31(6), pp. 839–855. Dernièrement modifiée par: Lynda Taabane  v    Pop. 26.34%
Cai, J., & Gorowara, C. C. (2002). Teachers’ conceptions and constructions of pedagogical representations in teaching statistics: a case of arithmetic average. In B. Phillips (Ed.), Developing a statistically literate society: Proceedings of the Sixth International Conference on Teaching Statistics (pp. 401–406). International Association for Statistical Education. Dernièrement modifiée par: Lynda Taabane  V    Pop. 27.61%
Cai, J., Lo, J. J., & Watanabe, T. (2002). Intended treatments of arithmetic average in u.s. and asian school mathematics textbooks. School Science and Mathematics, 102(8), pp. 391–404. Dernièrement modifiée par: Lynda Taabane  v    Pop. 27.07%
Chinn, C. A., & Brewer, W. F. (2001). A models of data : a theory of how people evaluate data. Cognition & Instruction, 19(3), pp. 323–393. Dernièrement modifiée par: Lynda Taabane  V    Pop. 24.34%
Cortina, J. L., Saldanha, L., & Thompson, P. (1999). Multiplicative conceptions of arithmetic mean. In F. Hitt (Ed.), Proceedings of the Annual Meeting of the International Group for the Psychology of Mathematics Cuernavaca, Mexico: Centro de Investigación y de Estudios Avanzados. Dernièrement modifiée par: Lynda Taabane  V    Pop. 25.34%
Cumming, G., & Maillardet, R. (2006). Confidence intervals and replication: Where will the next mean fall? Psychological Methods, 11(3), p. p217–227. Dernièrement modifiée par: Lynda Taabane  V    Pop. 32.06%
Garfield, J., & Ahlgren, A. (1988). Difficulties in learning basic concepts in probability and statistics: implications for research. Journal for Research in Mathematics Education, 19(1), pp. 44–63. Ajoutée par: Lynda Taabane  v    Pop. 26.98%
Garfield, J. (2002). The challenge of developing statistical reasoning. Journal of statistics education, 10(3). Dernièrement modifiée par: Lynda Taabane  v    Pop. 25.79%
Gattuso, L., & Mary, C. (1996). Development of concepts of the arithmetic average from high school to. Proceedings of the XX Conference on the Psychology of Mathematics Education, 20(2), pp. 409–416. Dernièrement modifiée par: Lynda Taabane  v    Pop. 20.25%
Gattuso, L., & Mary, C. (1998). Development of the concept of weighted average among. Proceedings of the Fifth International Conference on Teaching Statistics, 5, pp. 685–692. Dernièrement modifiée par: Lynda Taabane  V    Pop. 24.8%
Gattuso, L., & Mary, C. (2001). Pupils perception of the links between data and their arithmetic average. Proceedings of the 25th International Conference for the Psychology of Mathematics Education, 25(2), pp. 25–32. Dernièrement modifiée par: Lynda Taabane  v    Pop. 24.8%
Hardiman, P. T., Well, A. D., & Pollatsek, A. (1984). Usefulness of a balance model in understanding the mean. Journal of educational psychology, 76(5), p. p792–801. Dernièrement modifiée par: Lynda Taabane  V    Pop. 34.24%
Lecoutre, B. (2005). Et si vous etiez un bayesien qui s'ignore? Modulad, 32, pp. 92–105. Dernièrement modifiée par: Lynda Taabane  V    Pop. 26.07%
Lecoutre, B., Poitevineau, J., & Lecoutre, M.-P. (2005). Une raison pour ne pas abandonner les tests de signification de l'hypothèse nulle. Modulad, 33, pp. 243–248. Ajoutée par: Lynda Taabane  V    Pop. 27.52%
Mary, C., & Gattuso, L. (2005). Trois problèmes semblables de moyenne pas si semblables que ça ! l’influence de la structure d’un problème sur les réponses des élèves. Statistics Education Research Journal, 4(2), pp. 82–102. Dernièrement modifiée par: Lynda Taabane  v    Pop. 24.52%
Mevarech, Z. Z. (1983). A deep structure model of students' statistical misconceptions. Educational Studies in Mathematics, 14, pp. 415–429. Dernièrement modifiée par: Lynda Taabane  v    Pop. 22.8%

1 - 20   |   21 - 27
wikindx  v3.8.2 ©2007     |     Total Resources:  1609     |     Database queries:  93     |     Script execution:  2.01041 secs