Affichage de 41 - 60 of 71 (Bibliographie: Bibliographie WIKINDX globale)
 
Parameters:
Category:  problèmes arithmétiques
Micallef, S., & Prior, M. (2004). Arithmetic learning difficulties in children. Educational Psychology, 24(2), pp. 175–200. Dernièrement modifiée par: Sterenn Audo  V    Pop. 34.9%
Moreau, S. ((2001). La compréhension des énoncés de problèmes arithmétiques: Rôle du modèle de situation.). 1, Université de Poitiers, Poitiers. Dernièrement modifiée par: Sterenn Audo  v    Pop. 25.48%
Moreau, S., & Coquin-Viennot, D. (2003). Comprehension of arithmetic word problems by fifth-grade pupils: Representations and selection of information. British Journal of Educational Psychology, 73(1), p. p109. Dernièrement modifiée par: Lynda Taabane  V    Pop. 30.46%
Muth, D. K. (1984). Solving arithmetic word problems: Role of reading and computational skills. Journal of educational psychology, 76(2), p. p205–210. Dernièrement modifiée par: Lynda Taabane  V    Pop. 30.64%
Mwangi, W., & Sweller, J. (1998). Learning to solve compare word problems: The effect of example format and generating self-explanations. Cognition & Instruction, 16(2), pp. 173–199. Dernièrement modifiée par: Sterenn Audo  V    Pop. 28.47%
Nathan, M. J., Kintsch, W., & Young, E. (1992). A theory of algebra-word-problem comprehension and its implications for the design of learning environments. Cognition & Instruction, 9(4), p. p329. Dernièrement modifiée par: Lynda Taabane  V    Pop. 28.74%
Nesher, P. (1981). Levels of description in the analysis of addition and subtraction. In T. P. Carpenter, J. M. Moser & T. A. Romberg (Eds.), Addition and substraction : A cognitive perspective (pp. 25–39). Hillsdale, NJ: Lawrence Erlbaum. Dernièrement modifiée par: Lynda Taabane  v    Pop. 25.93%
Neuman, Y., & Schwarz, B. (2000). Substituting one mystery for another: The role of self-explanations in solving algebra word-problems. Learning and Instruction, 10(3), pp. 203–220. Dernièrement modifiée par: Sterenn Audo  V    Pop. 32.46%
Prabhakaran, V., Rypma, B., & Gabrieli, J. D. E. (2001). Neural substrates of mathematical reasoning: A functional magnetic resonance imaging study of neocortical activation during performance of the necessary arithmetic operations test. Neuropsychology, 15(1), p. p115–127. Dernièrement modifiée par: Lynda Taabane  V    Pop. 28.01%
Reed, S. K. (1984). Estimating answers to algebra word problems. Journal of experimental psychology: Learning, Memory, and Cognition, 10(4), pp. 778–790. Dernièrement modifiée par: Sterenn Audo  v    Pop. 30.19%
Reusser, K., Lajoie, S. P., & Derry, S. J. (1993). Tutoring systems and pedagogical theory: Representational tools for understanding, planning, and reflection in problem solving. In Computers as cognitive tools. (pp. p143–177). Lawrence Erlbaum Associates, Inc. Dernièrement modifiée par: Lynda Taabane  v    Pop. 28.01%
Reusser, K. (2000). Success and failure in school mathematics: Effects of instruction and school environment. European Child & Adolescent Psychiatry, 9(2), pp. 17–26. Dernièrement modifiée par: Lynda Taabane  V    Pop. 27.65%
Rickard, T. C. (2005). A revised identical elements model of arithmetic fact representation. Journal of experimental psychology: Learning, Memory, and Cognition, 31(2), p. p250–257. Dernièrement modifiée par: Lynda Taabane  V    Pop. 28.47%
Riley, M. S., & Greeno, J. G. (1988). Developmental analysis of understanding language about quantities and of solving problems. Cognition & Instruction, 5(1), p. p49. Dernièrement modifiée par: Lynda Taabane  V    Pop. 31.55%
Robinson, K. M. (2001). The validity of verbal reports in children's subtraction. Journal of educational psychology, 93(1), p. p211–222. Dernièrement modifiée par: Lynda Taabane  V    Pop. 31.37%
Schliemann, A. D., Araujo, C., Cassundé, M. A., Macedo, S., & Nicéas, L. (1998). Use of multiplicative commutativity by school children and street sellers. Journal for Research in Mathematics Education, 29(4), p. p422–435. Dernièrement modifiée par: Lynda Taabane  v    Pop. 33.82%
Sophian, C. (1988). Early developments in children's understanding of number: Inferences about numerosity and one-to-one correspondence. Child Development, 59(5), p. p1397. Dernièrement modifiée par: Lynda Taabane  V    Pop. 29.19%
Sophian, C., & McCorgray, P. (1994). Part-whole knowledge and early arithmetic problem solving. Cognition & Instruction, 12(1), p. p3. Dernièrement modifiée par: Lynda Taabane  V    Pop. 30.37%
Sophian, C., & Vong, K. I. (1995). The parts and wholes of arithmetic story problems: Developing knowledge in preschool years. Cognition and Instruction, 13(3), p. p469–477. Dernièrement modifiée par: Lynda Taabane  V    Pop. 34.72%
Sophian, C., & Madrid, S. (2003). Young children's reasoning about many-to-one correspondences. Child Development, 74(5), p. p1418–1432. Dernièrement modifiée par: Lynda Taabane  V    Pop. 35.63%

1 - 20   |   21 - 40   |   41 - 60   |   61 - 71
wikindx  v3.8.2 ©2007     |     Total Resources:  1609     |     Database queries:  93     |     Script execution:  1.1522 secs