référence suivante
Article de revue: ID no. (ISBN etc.):  0033-295X Clé de citation BibTeX:  Hummel1992
Hummel, J. E., & Biederman, I. (1992). Dynamic binding in a neural network for shape recognition. Psychological Review, 99(3), p. p480–517.
Ajoutée par: Sterenn Audo 2008-01-21 15:16:45    Dernièrement modifiée par: Sterenn Audo 2008-01-21 15:24:04
 B  
Catégories: Analogie, Full text
Descripteurs: Form and Shape Perception, neural network model of dynamic binding in shape recognition, Neural Networks
Auteurs: Biederman, Hummel
Collection: Psychological Review

Nombre de vues:  299
Popularité:  27.11%

 
Résumé
Given a single view of an object, humans can readily recognize that object from other views that preserve the parts in the original view. Empirical evidence suggests that this capacity reflects the activation of a viewpoint-invariant structural description specifying the object's parts and the relations among them. This article presents a neural network that generates such a description. Structural description is made possible through a solution to the dynamic binding problem: Temporary conjunctions of attributes (parts and relations) are represented by synchronized oscillatory activity among independent units representing those attributes. Specifically, the model uses synchrony (1) to parse images into their constituent parts, (2) to bind together the attributes of a part, and (3) to bind the relations to the parts to which they apply. Because it conjoins independent units temporarily, dynamic binding allows tremendous economy of representation and permits the representation to reflect the attribute structure of the shapes represented. (PsycINFO Database Record (c) 2006 APA, all rights reserved)
Ajoutée par: Sterenn Audo

 
Informations supplémentaires en ligne :
http://search.ebscohost.com/login.aspx ... 80&lang=fr&site=ehost-live

 
Idées
pdf dispo
Ajoutée par: Sterenn Audo
 

 
wikindx  v3.8.2 ©2007     |     Total Resources:  1609     |     Database queries:  30     |     Script execution:  1.71276 secs