référence suivante
Article de revue: ID no. (ISBN etc.):  13546791 Clé de citation BibTeX:  Nunez1998
Núñez, R. E., & Lakoff, G. (1998). What did weierstrass really define? the cognitive structure of natural and continuity. Mathematical Cognition, 4(2), p. p85.
Ajoutée par: Lynda Taabane 2007-12-12 15:05:14    Dernièrement modifiée par: Lynda Taabane 2007-12-21 13:27:18
 B  
Catégories: Apprentissage mathématiques, Full text, Représentations naives
Descripteurs: CONTINUITY, MATHEMATICS -- Philosophy
Auteurs: Lakoff, Núñez
Collection: Mathematical Cognition

Nombre de vues:  298
Popularité:  27.02%

 
Résumé
The cognitive science of mathematics is the study of mathematical ideas from the perspective of research on our largely unconscious everyday conceptual systems as they are embodied in the human brain. A major result is that most everyday abstract ideas are metaphorical in nature that is, they involve inference-preserving mappings from one conceptual domain to another. Many mathematical ideas are metaphorical in this respect, as when we conceptualise numbers metaphorically as points on a line, or when we conceptualise lines metaphorically as sets of points. The concept of continuity is metaphorical as well. In everyday thought, (natural) continuity is understood in terms of a trajectory of motion, as it was in mathematics until the late nineteenth century. From a cognitive perspective, what Dedekind and Weierstrass really did was to introduce new metaphors for natural continuity. That is, they conceptualised continuity for lines and for functions in terms of two new and radically diffe
Ajoutée par: Lynda Taabane    Dernièrement modifiée par: Lynda Taabane

 
Informations supplémentaires en ligne :
http://search.ebscohost.com/login.aspx ... 26&lang=fr&site=ehost-live

 
Idées
pdf dispo
Ajoutée par: Lynda Taabane
 

 
wikindx  v3.8.2 ©2007     |     Total Resources:  1609     |     Database queries:  31     |     Script execution:  1.80949 secs